Targeting Cancer Gene Therapy with Magnetic Nanoparticles

نویسندگان

  • Charles Li
  • Linda Li
  • Andrew C. Keates
چکیده

Recent advances in cancer genomics have opened up unlimited potential for treating cancer by directly targeting culprit genes. However, novel delivery methods are needed in order for this potential to be translated into clinically viable treatments for patients. Magnetic nanoparticle technology offers the potential to achieve selective and efficient delivery of therapeutic genes by using external magnetic fields, and also allows simultaneous imaging to monitor the delivery in vivo. Compared to conventional gene delivery strategies, this technique has been shown to significantly increase gene delivery to human xenograft tumors models, as well as various internal organs (e.g. liver, kidney) and the central nervous system. Magnetic nanoparticle technology, therefore, has the potential to turn the challenge of gene therapy in vivo into a new frontier for cancer treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have s...

متن کامل

Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field

Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show th...

متن کامل

An investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice

Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...

متن کامل

Magnetic response of mitochondria-targeted cancer cells with bacterial magnetic nanoparticles.

We first demonstrate the effects of magnetic trapping of mitochondria using aptamer conjugated to bacterial magnetic nanoparticles that allowed targeting of the mitochondrial cytochrome c in the treatment of cancer cells. Our findings offer a new approach for targeted cell therapy, with the advantage of remote control over subcellular elements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012